447
Advances in Metabolomics Research in Environmental Stress Response in Plants
Piasecka, A., Kachlicki, P., & Stobiecki, M., (2019). Analytical methods for detection of plant
metabolomes changes in response to biotic and abiotic stresses. Int. J. Mol. Sci., 20, 379.
Pyl, E. T., Piques, M., Ivakov, A., Schulze, W., Ishihara, H., Stitt, M., & Sulpice, R., (2012).
Metabolism and growth in Arabidopsis depend on the daytime temperature but are
temperature-compensated against cool nights. Plant Cell, 24, 2443–2469.
Razzaq, A., Sadia, B., Raza, A., Khalid, H. M., & Saleem, F., (2019). Metabolomics: A way
forward for crop improvement. Metabolites, 9, 303.
Ren, S., Ma, K., Lu, Z., Chen, G., Cui, J., Tong, P., Wang, L., et al., (2019). Transcriptomic
and metabolomics analysis of the heat-stress response of Populus tomentosa carr. Forests,
10, 383.
Roberts, L. D., Souza, A. L., Gerszten, R. E., & Clish, C. B., (2012). Targeted metabolomics.
Curr. Protoc. Mol. Biol., 98, 30.
Rouphael, Y., Raimondi, G., Lucini, L., Carillo, P., Kyriacou, M. C., Colla, G., Cirillo, V.,
et al., (2018). Physiological and metabolic responses triggered by omeprazole improve
tomato plant tolerance to NaCl stress. Front Plant Sci., 9, 249.
Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H., (2020). Agronomic crop responses and
tolerance to drought stress. In: Agronomic Crops (pp. 63–91). Springer: Berlin/Heidelberg,
Germany.
Sanchez-Martin, J., Canales, F. J., Tweed, J. K. S., Lee, M. R. F., Rubiales, D., Gómez-
Cadenas, A., Arbona, V., et al., (2018). Fatty acid profile changes during gradual soil water
depletion in oats suggests a role for jasmonates in coping with drought. Front Plant Sci.,
9, 1077.
Seo, S. H., Park, S. E., Kim, E. J., Lee, K. I., Na, C. S., & Son, H. S., (2018). A GC-MS based
metabolomics approach to determine the effect of salinity on kimchi. Food Res. Int., 105,
492–498.
Sharma, S. S., & Dietz, K. J., (2006). The significance of amino acids and amino acid-derived
molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57, 711–726.
Shelden, M. C., Dias, D. A., Jayasinghe, N. S., Bacic, A., & Roessner, U., (2016). Root spatial
metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in
response to short-term salt stress. J. Exp. Bot., 67, 3731–3745.
Silvente, S., Sobolev, A. P., & Lara, M., (2012). Metabolite adjustments in drought tolerant
and sensitive soybean genotypes in response to water stress. PLoS One, 7, e38554.
Singh, A., Banerjee, A., & Roychoudhury, A., (2020). Seed priming with calcium compounds
abrogate fluoride-induced oxidative stress by upregulating defense pathways in an indica
rice variety. Protoplasma, 257, 767–782.
Singh, V. P., Singh, S., Kumar, J., & Prasad, S. M., (2015). Investigating the roles of ascorbate
glutathione cycle and thiol metabolism in arsenate tolerance in ridged luffa seedlings.
Protoplasma, 252, 1217–1229.
Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H., (2010). Cold stress effects on
reproductive development in grain crops: An overview. Environ. Exp. Bot., 67, 429–443.
Theodoridis, G., Gika, H., Franceschi, P., Caputi, L., Arapitsas, P., Scholz, M., Masuero, D., et
al., (2012). LC-MS based global metabolite profiling of grapes: Solvent extraction protocol
optimization. Metabolomics, 8, 175–185.
Ullah, A., Sun, H., Yang, X., & Zhang, X., (2017). Drought coping strategies in cotton:
Increased crop per drop. Plant Biotechnol. J., 15, 271–284.